Temperature Transmitters for Signal Conditioning

Temperature transmitters convert thermocouple, RTD, and low-level temperature sensor signals to 4-20mA, 0-10V, or other DC voltage/current outputs. Acromag offers temperature transmitters in head-mount and DIN-rail form factors. Some temperature transmitters have software-configured universal input to convert a broad range of temperature sensor and other signals with a single unit. Many options to choose from -  head mount temperature transmitter, DIN-rail temperature transmitter, universal programmable transmitter browse the options below.

Showing all 13 results

  • Compare

    DT233: Thermocouple / milliVolt Input Two-Wire Dual Transmitter

    • Dual channels
    • Universal thermocouple, mV input
    • 4-20mA outputs (sink/source)
    • 7-32V DC loop/local
    The DT233 model is a dual two-wire transmitter that isolates and converts millivolt or thermocouple sensor inputs to proportional 4-20mA control signals. Power is received from the output loop current.

    Click here to watch a short video highlighting the features of the DT233.

     
    Select options
  • Compare

    TT233: Thermocouple / milliVolt Input Two-Wire Transmitter

    • Universal TC type J, K, T, R, S, E, B, N or ±100mV input
    • 4-20mA ouput (sink/source)
    • 12-32 V DC loop/local power
    The TT233 model is a space-saving two-wire transmitter that isolates and converts a millivolt or thermocouple sensor input to a proportional 4-20mA control signal. Power is received from the output loop current or a DC supply when using a three-wire connection. Click here to watch a short AcroMaggie video highlighting the TT230 Series.        
    Select options
  • Compare

    DT235: RTD / Resistance Input Two-Wire Dual Transmitter

    • Dual channels
    • RTD (Pt, Ni, Cu), 0-4500 ohm inputs
    • 4-20mA output (sink/source)
    • 7-32V DC loop power
    The DT235 model is a two-wire dual transmitter that isolates and converts RTD or linear resistance sensor inputs to a proportional 4-20mA control signal.

    Click here to watch a short video highlighting the features of the DT235.

    Select options
  • Compare

    TT231: RTD / Resistance Input Two-Wire Transmitter

    • 100 ohm Pt RTD or 0-900 ohm input
    • 4-20mA output (sink/source)
    • 12-32V DC loop/local power
    • USB configuration
    The TT231 model is a space-saving two-wire transmitter that converts a 100 ohm Platinum RTD sensor input to a proportional 4-20mA signal. Power is received from the output loop current or a DC supply when using a three-wire connection. Click here to watch a short AcroMaggie video highlighting the TT230 Series.
    Select options
  • Compare

    655T, 656T: Single or Dual Channel, Thermocouple/milliVolt Input, Loop-powered Transmitter

    • TC (types J, K T, R, S, E, B, N), ±1V DC, selectable range/type input
    • 4 to 20mA DC output
    • 12-50V DC from output loop power
    • DIP-switch configuration, signal linearizer, push-button calibration
    These units accept universal thermocouple and millivolt input signals, provide isolation, and output proportional DC current signals. The output can also be linearized to the input sensor signal.  
    Select options
  • Compare

    657T, 658T: Single or Dual Channel, RTD Input, Loop-powered Transmitter

    • 100 ohm Pt, 120 ohm Ni, 10 ohm Cu (selectable type) input
    • 4 to 20mA DC output
    • 12-50V DC from output loop power
    • DIP-switch configuration, push-button calibration
    These units accept universal RTD or resistance input signals and output proportional DC current signals. The output can also be linearized to the input sensor signal.
    Select options
  • Compare

    ST131: Transmitter, RTD Input, Loop-Powered

    • 100 ohm Pt RTD or 0-900 ohm input
    • 4 to 20mA DC output
    • 9-32V DC from output loop power
    • USB-configured
    The ST131 is a low-cost two-wire transmitter that converts a 100 ohm Platinum RTD sensor input to a proportional 4-20mA signal. Power is received from the output loop current.
    Select options
  • Compare

    ST132: Thermocouple/milliVolt Input Head-mount Transmitter

    • Universal thermocouple (8 types) or ±100mV input
    • 4-20mA output
    • Loop-powered, 7-32V DC
    The ST132 is a low-cost two-wire transmitter that converts a millivolt or thermocouple sensor input to a proportional 4-20mA control signal. Power is received from the output loop current. The transmitter performs signal linearization, cold-junction compensation, and lead-break detection functions.  
    Select options
  • Compare

    ST133: Isolated Transmitter; Thermocouple/mV Input

    • TC type J, K, T, R, S, E, B, and N or ±100mV input
    • 1500V isolation
    • 4 to 20mA DC output
    • USB-configured
    The ST133 is a low-cost two-wire transmitter that isolates and converts a millivolt or thermocouple sensor input to a proportional 4-20mA control signal. Power is received from the output loop current. The transmitter performs signal linearization, cold-junction compensation, and lead-break detection functions.    
    Select options
  • Compare

    TT234: Potentiometer / Thermistor Input, Two-Wire Transmitter

    • Potentometer / slidewire, thermister input
    • 4 to 20mA output (sink / source)
    • 12-32V DC loop / local power
    • USB configuration
    The TT234 model is a space-saving two-wire transmitter that isolates and converts a resistive sensor input to a proportional 4-20mA signal. Power is received from the output loop current or a DC supply when using a three-wire connection. Click here to watch a short AcroMaggie video highlighting the TT230 Series.
    Select options
  • Compare

    TT235: Isolated RTD Input, Loop Power, 2-Wire Transmitter

    • Selectable RTD or linear resistance input type or 0-500 ohm input
    • 4-20mA output (sink/source)
    • 12-32V DC loop/local power
    • USB configuration
    The TT235 model is a space-saving two-wire transmitter that isolates and converts an RTD sensor input to a proportional 4-20mA signal. Power is received from the output loop current or a DC supply when using a three-wire connection. Click here to watch a short AcroMaggie video highlighting the TT230 Series.
    Select options
  • Compare

    250T-RB, 350T-RB, 450T-RB Loop, DC, or AC-Power Transmitter

    • Platinum RTD or Copper RTD (resistance temperature sensor) Input
    • DC Voltage/Current Output
    Select options
  • Compare

    250T-TC, 350T-TC, 450T-TC Loop, DC, or AC-Power Transmitter

    • J, K, T, E, R, S, B Thermocouple Input
    • DC Voltage or DC Current Output
    These models convert sensor inputs to proportional process current or voltage output signals. Excellent accuracy and stability ensure reliable measurements in harsh industrial environments.    
    Select options

Temperature Transmitters - Continued

Green Separator Line

What is a Temperature Transmitter For Signal Conditioning?

A temperature transmitter is an electrical instrument that interfaces a temperature sensor for example a thermocouple, RTD, or thermistor sensor to a measurement or control device like a PLC, DCS, PC, loop controller, data logger, display, recorder, etc.

Typically, temperature transmitters isolate, amplify, filter noise, linearize, and convert the input signal from the sensor then send or transmit a standardized output signal to the control device. Common electrical output signals used in manufacturing plants are 4-20mA or 0-10V DC ranges. For example, 4mA could represent 0°C and 20mA means 100°C. 

Temperature Transmitter Inputs

A thermocouple sensor is a pair of dissimilar metal wires joined at one end. The junction produces a low level voltage proportional to the difference in temperature between the open and closed ends. 

An RTD or Resistance Temperature Detector is a passive circuit element whose resistance increases with increasing temperature in a predictable manner.

You Might Also Like

How to Monitor Temperature in a Production Furnace Application Note

How to Monitor RTDs for Temperature Differential Application Note

Didn't find what you needed? Here you can see more application notes and white papers